Generalizing Khinchin’s theorem to a linear combination of analytical linearly independent functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator

In this paper we obtain coefficient characterization‎, ‎extreme points and‎ ‎distortion bounds for the classes of harmonic $p-$valent functions‎ ‎defined by certain modified operator‎. ‎Some of our results improve‎ ‎and generalize previously known results‎.

متن کامل

Minimal Surface Linear Combination Theorem

Given two univalent harmonic mappings f1 and f2 on D, which lift to minimal surfaces via the Weierstrass-Enneper representation theorem, we give necessary and sufficient conditions for f3 = (1−s)f1+sf2 to lift to a minimal surface for s ∈ [0, 1]. We then construct such mappings from Enneper’s surface to Scherk’s singularly periodic surface, Sckerk’s doubly periodic surface to the catenoid, and ...

متن کامل

A game generalizing Hall's Theorem

We characterize the initial positions from which the first player has a winning strategy in a certain two-player game. This provides a generalization of Hall’s Theorem. Vizing’s Theorem on edge-coloring follows from a special case.

متن کامل

Linearly Independent Products of Rectangularly Complementary Schur Functions

Fix a rectangular Young diagram R, and consider all the products of Schur functions sλsλc , where λ and λ c run over all (unordered) pairs of partitions which are complementary with respect to R. Theorem: The self-complementary products, s2λ where λ = λ , are linearly independent of all other sλsλc . Conjecture: The products sλsλc are all linearly independent.

متن کامل

Function-driven Linearly Independent Expansions of Boolean Functions

The paper presents a family of new expansions of Boolean functions called Function-driven Linearly Independent (fLI) expansions. On the basis of this expansion a new kind of a canonical representation of Boolean functions is constructed: Function-driven Linearly Independent Binary Decision Diagrams (fLIBDDs). They generalize both Function-driven Shannon Binary Decision Diagrams (fShBDDs) and Li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Doklady of the National Academy of Sciences of Belarus

سال: 2019

ISSN: 2524-2431,1561-8323

DOI: 10.29235/1561-8323-2019-63-2-135-141